Top Rated by Parents/Students Nationwide

Applications of Trigonometry

Applications of Trigonometry

Choosing which rule or formula to use

  • It is important to be able to decide which Rule or Formula to use to answer a question
  • This table summarises the possibilities:

Sine & Cosine Rules, Area of Triangle – Harder table, IGCSE & GCSE Maths revision notes

Non-Right-Angled Triangles Diagram 2

Using the cosine rules to find angles

  • The Cosine Rule can be rearranged to give: 

cos space A equals fraction numerator b squared plus c squared minus a squared over denominator 2 b c end fraction

  • When using the inverse cosine function (i.e. cos to the power of negative 1 end exponent) we can use this to find the size of angle A:

A equals cos to the power of negative 1 end exponent open parentheses fraction numerator b squared plus c squared minus a squared over denominator 2 b c end fraction close parentheses

  • This form of the formula is not on your exam formula sheet, so make sure you can do the rearrangement yourself!

Using the sine rule to find angles

Sine-Rule-Ambiguous-case, IGCSE & GCSE Maths revision notes

  • If all we know are the lengths of A B and B C and the size of angle B A C, there are two possible triangles that could be drawn
    • one with side B C subscript 1 (and angle x equals 102.8 degree)
    • the other with side B C subscript 2 (and angle y equals 77.2 degree)
    • Using your calculator and the Sine Rule would only find you the possibility with angle y
    • You may need to subtract your answer from 180° to find the angle you need 

Exam Tip

  • In more involved exam questions, you may have to use both the Cosine Rule and the Sine Rule over several steps to find the final answer
  • If your calculator gives you a ‘Maths ERROR’ message when trying to find an angle using the Cosine Rule, you probably subtracted things the wrong way around when you rearranged the formula
  • The Sine Rule can also be written ‘flipped over’:

fraction numerator sin A over denominator a end fraction equals fraction numerator sin B over denominator b end fraction equals fraction numerator sin C over denominator c end fraction

    • This is more useful when we are using the rule to find angles
    • When finding angles with the Sine Rule, use the info in the question to decide whether you have the acute angle case (ie the calculator value) or the obtuse angle case (ie, minus the calculator value)
  • The Cosine Rule will never give you an ambiguous answer for an angle – as long as you put the right things into the calculator, the answer that comes out will be the correct angle

Worked example

In the following triangle:General-Triangle-with-values-2, IGCSE & GCSE Maths revision notesa) Find the size of angle ABC.

b) Given that angle ACB is obtuse, use the Sine Rule and your answer from (a) to find the size of angle ABC.

Give your answers accurate to 1 d.p.

Number Toolkit
  • Mathematical Operations
  • Negative Numbers
  • Money Calculations
  • Number Operations
  • Related Calculations
  • Counting Principles
Prime Factors, HCF & LCM
  • Types of Number
  • Prime Factor Decomposition
  • HCF & LCM
Powers, Roots & Standard Form
  • Powers, Roots & Indices
  • Standard Form
Fractions
  • Basic Fractions
  • Operations with Fractions
Percentages
  • Basic Percentages
  • Working with Percentages
Simple & Compound Interest, Growth & Decay
  • Interest & Depreciation
  • Exponential Growth & Decay
Fractions, Decimals & Percentages
  • Converting between FDP
  • Converting between FDP
Rounding, Estimation & Bounds
  • Rounding & Estimation
  • Bounds
Surds
  • Simplifying Surds
  • Rationalising Denominators
Using a Calculator
  • Using a Calculator
Algebra Toolkit
  • Algebraic Notation & Vocabulary
  • Algebra Basics
Algebraic Roots & Indices
  • Algebraic Roots & Indices
Expanding Brackets
  • Expanding Single Brackets
  • Expanding Multiple Brackets
Factorising
  • Factorising
  • Factorising Quadratics
  • Quadratics Factorising Methods
Completing the Square
  • Completing the Square
Rearranging Formulae
  • Rearranging Formulae
Algebraic Proof
  • Algebraic Proof
Linear Equations
  • Solving Linear Equations
Solving Quadratic Equations
  • Solving Quadratic Equations
  • Quadratic Equation Methods
Simultaneous Equationsr
  • Simultaneous Equations
Iteration
  • Iteration
Forming & Solving Equations
  • Forming Equations
  • Equations & Problem Solving
Functions
  • Functions Toolkit
  • Composite & Inverse Functions
Coordinate Geometrys
  • Coordinates
  • Coordinate Geometry
Linear Graphs y = mx + c
  • Straight Line Graphs (y = mx + c)
  • Parallel & Perpendicular Lines
Graphs of Functions
  • Types of Graphs
  • Graphical Solutions
  • Trig Graphs
Equation of a Circle
  • Equation of a Circle
  • Equation of a Tangents
Estimating Gradients & Areas under Graphs
  • Finding Gradients of Tangents
  • Finding Areas under Graphs
Real-Life Graphs
  • Distance-Time & Speed-Time Graphs
  • Conversion Graphs
  • Rates of Change of Graphs
Solving Inequalities
  • Solving Linear Inequalities
  • Conversion Graphs
  • Solving Quadratic Inequalities
Graphing Inequalities
  • Graphing Inequalities
Transformations of Graphs
  • Reflections of Graphs
Sequences
  • Introduction to Sequences
  • Types of Sequences
  • Linear Sequences
  • Quadratic Sequences
Ratio Toolkit
  • Simple Ratio
  • Working with Proportion
Ratio Problem Solving
  • Ratios & FDP
  • Multiple Ratios
Direct & Inverse Proportions
  • Direct & Inverse Proportion
Standard & Compound Units
  • Time
  • Unit Conversions
  • Compound Measures
Exchange Rates & Best Buys
  • Exchange Rates & Best Buys
Geometry Toolkit
  • Symmetry
  • 2D & 3D Shapes
  • Plans & Elevations
Angles in Polygons & Parallel Lines
  • Basic Angle Properties
  • Angles in Polygons
  • Angles in Parallel Lines
Bearings, Scale Drawing, Constructions & Loci
  • Bearings
  • Scale & Maps
  • Constructing Triangles
  • Constructions & Loci
Circle Theorems
  • Angles at Centre & Semicircles
  • Chords & Tangents
  • Cyclic Quadrilaterals
  • Segment Theorems
  • Circle Theorem Proofs
Area & Perimeter
  • Area & Perimeter
  • Problem Solving with Areas
Circles, Arcs & Sectors
  • Area & Circumference of Circles
  • Arcs & Sectors
Volume & Surface Area
  • Volume
  • Surface Area
Congruence, Similarity & Geometrical Proof
  • Congruence
  • Similarity
  • Geometrical Proof
Area & Volume of Similar Shapes
  • Similar Area & Volumes
Right-Angled Triangles – Pythagoras & Trigonometry
  • Pythagoras Theorem
  • Right-Angled Trigonometry
  • Exact Trig Values
Sine, Cosine Rule & Area of Triangles
3D Pythagoras & Trigonometry
  • 3D Pythagoras & Trigonometry
Vectors
  • Introduction to Vectors
  • Working with Vectors
Transformations
  • Translations
  • Reflections
  • Rotations
  • Enlargements
  • Combination of Transformations
Probability Toolkit
  • Basic Probability
  • Relative & Expected Frequency
Simple Probability Diagrams
  • Two Way Tables
  • Frequency Trees
  • Set Notation & Venn Diagrams
Tree Diagrams
  • Tree Diagrams
Combined & Conditional Probability
  • Combined Probability
  • Conditional Probability
  • Combined Conditional Probabilities
Statistics Toolkit
  • Mean, Median & Mode
  • Averages from Tables
  • Range & Quartiles
  • Comparing Distributions
  • Population & Sampling
Statistical Diagrams
  • Bar Charts & Pictograms
  • Pie Charts
  • Time Series Graphs
  • Working with Statistical Diagrams
Histograms
  • Histograms
Cumulative Frequency & Box Plots
  • Cumulative Frequency Diagrams
  • Box Plots
Scatter Graphs & Correlation
  • Scatter Graphs