Top Rated by Parents/Students Nationwide

Geometrical Proof

Geometrical Proof

What is a geometrical proof?

  • Geometric proof involves using known rules about geometry to prove a new statement about geometry
  • A proof question might start with “Prove…” or “Show that …”
  • The rules that you might need to use to complete a proof include;
    • Properties of 2D shapes – in particular of isosceles triangles and quadrilaterals
    • Basic angle properties
    • Angles in polygons
    • Angles in parallel lines
    • Congruence and similarity
    • Circle theorems
    • Pythagoras theorem
  • You will need to be familiar with the vocabulary of the topics above, in order to fully answer many geometrical proof questions

How do I write a geometrical proof?

  • Usually you will need to write down two or three steps to prove the statement
  • At each step, you should write down a fact and a reason, especially if asked in the question to show reasons. Write it in the form “[fact] , [mathematical reason]”
    • For example, “ AB = CD, opposite sides of a rectangle are equal length
  • The proof is complete when you have written down all the steps clearly
  • It’s a good idea to start by underlining key words in the question – and if they’re not already, mark any of the information from the question on the diagram
  • Use the diagram! Add key information such as angles or line lengths to the diagram as you work through the steps – but you must write them down in your written answer too!

What notation should I use?

  • Labelling vertices (corners) and lengths are done in capital letters
    • e.g. “from A to B …”
    • e.g. “side lengths AB and BC are equal…”
    • e.g. “triangle ABC is …”
  • Labelling angles can be done by writing “angle ABC
    • other shorthand ways include  A B with hat on top C or ∠ ABC
    • if referring to angle x for ease, then you should label x on the diagram and define what x is
      • e.g. ” x is acute, where x = angle BAC”

What phrases can I say?

  • There are common phrases that are sufficient as explanations and should be learnt
  • For triangles and quadrilaterals,
    • “angles in a triangle sum to 180”
    • the triangle is “isosceles” / “equilateral” / “right-angled”
    • “base angles in an isosceles triangle are equal”
    • the length is … “by Pythagoras”
    • “angles in a quadrilateral sum to 360”
  • For straight lines,
    • “parallel” / “perpendicular”
    • the points are “collinear” (lie on the same straight line)
    • “midpoint”
  • For angles at points,
    • “vertically opposite angles are equal”
    • “angles on a straight line sum to 180”
    • “angles at a point sum to 360”
  • For angles in polygons,
    • “exterior angles sum to 360”
    • “interior angles sum to 180(n – 2)”
  • For angles in parallel lines,
    • “alternate angles are equal”
    • “corresponding angles are equal”
    • “co-interior angles sum to 180”
  • For congruent or similar shapes,
    • triangle ABC is “congruent to” triangle PQR
    • shape X and shape Y are “similar” 
  • For circle theorems,
    • “two radii make an isosceles triangle”
    • “angle at centre is twice angle at circumference”
    • “angle in a semicircle is 90”
    • “radius bisects chord at right-angles”
    • “radius meets tangent at right-angles”
    • “opposite angles in cyclic quadrilateral sum to 180”
    • “angles in same segment are equal”
    • “alternate segment theorem”

Exam Tip

  • DO show all the key steps – if in doubt, include it
  • DON’T write in full sentences! For each step, just write down the fact, followed by the key mathematical reason that justifies it

Worked example

In the diagram below,  AC and DG are parallel lines.  B lies on AC, E and F lie on DG and triangle BEF is isosceles.

4-5-3-geometrical-proof-we

Prove that angle EBF is 180 minus 2 x. Give reasons for each stage of your working.

Mark on the diagram that triangle BEF is isosceles.

4-5-3-geometrical-proof-we-answer1

AC and DG are parallel lines, so using alternate angles we know that angle BEF = x . Mark this on the diagram.

4-5-3-geometrical-proof-we-answer2

Write the fact, and the reason using the key mathematical vocabulary

angle BEFbold italic x , alternate angles

Now using the fact that triangle  BEF is isosceles, we can see that angle  BFEx. Mark this on the diagram.

4-5-3-geometrical-proof-we-answer3

Write the fact, and the reason using the key mathematical vocabulary

angle BFE =  bold italic x, isosceles triangle

Now we can see that angle  EBF is the last remaining angle in a triangle, and as the angles in a triangle sum to 180, angle EBF = 180 minus 2 x

Write the fact, and the reason using the key mathematical vocabulary

angle EBF =  bold 180 bold minus bold 2 bold italic x, angles in a triangle sum to 180

Number Toolkit
  • Mathematical Operations
  • Negative Numbers
  • Money Calculations
  • Number Operations
  • Related Calculations
  • Counting Principles
Prime Factors, HCF & LCM
  • Types of Number
  • Prime Factor Decomposition
  • HCF & LCM
Powers, Roots & Standard Form
  • Powers, Roots & Indices
  • Standard Form
Fractions
  • Basic Fractions
  • Operations with Fractions
Percentages
  • Basic Percentages
  • Working with Percentages
Simple & Compound Interest, Growth & Decay
  • Interest & Depreciation
  • Exponential Growth & Decay
Fractions, Decimals & Percentages
  • Converting between FDP
  • Converting between FDP
Rounding, Estimation & Bounds
  • Rounding & Estimation
  • Bounds
Surds
  • Simplifying Surds
  • Rationalising Denominators
Using a Calculator
  • Using a Calculator
Algebra Toolkit
  • Algebraic Notation & Vocabulary
  • Algebra Basics
Algebraic Roots & Indices
  • Algebraic Roots & Indices
Expanding Brackets
  • Expanding Single Brackets
  • Expanding Multiple Brackets
Factorising
  • Factorising
  • Factorising Quadratics
  • Quadratics Factorising Methods
Completing the Square
  • Completing the Square
Rearranging Formulae
  • Rearranging Formulae
Algebraic Proof
  • Algebraic Proof
Linear Equations
  • Solving Linear Equations
Solving Quadratic Equations
  • Solving Quadratic Equations
  • Quadratic Equation Methods
Simultaneous Equationsr
  • Simultaneous Equations
Iteration
  • Iteration
Forming & Solving Equations
  • Forming Equations
  • Equations & Problem Solving
Functions
  • Functions Toolkit
  • Composite & Inverse Functions
Coordinate Geometrys
  • Coordinates
  • Coordinate Geometry
Linear Graphs y = mx + c
  • Straight Line Graphs (y = mx + c)
  • Parallel & Perpendicular Lines
Graphs of Functions
  • Types of Graphs
  • Graphical Solutions
  • Trig Graphs
Equation of a Circle
  • Equation of a Circle
  • Equation of a Tangents
Estimating Gradients & Areas under Graphs
  • Finding Gradients of Tangents
  • Finding Areas under Graphs
Real-Life Graphs
  • Distance-Time & Speed-Time Graphs
  • Conversion Graphs
  • Rates of Change of Graphs
Solving Inequalities
  • Solving Linear Inequalities
  • Conversion Graphs
  • Solving Quadratic Inequalities
Graphing Inequalities
  • Graphing Inequalities
Transformations of Graphs
  • Reflections of Graphs
Sequences
  • Introduction to Sequences
  • Types of Sequences
  • Linear Sequences
  • Quadratic Sequences
Ratio Toolkit
  • Simple Ratio
  • Working with Proportion
Ratio Problem Solving
  • Ratios & FDP
  • Multiple Ratios
Direct & Inverse Proportions
  • Direct & Inverse Proportion
Standard & Compound Units
  • Time
  • Unit Conversions
  • Compound Measures
Exchange Rates & Best Buys
  • Exchange Rates & Best Buys
Geometry Toolkit
  • Symmetry
  • 2D & 3D Shapes
  • Plans & Elevations
Angles in Polygons & Parallel Lines
  • Basic Angle Properties
  • Angles in Polygons
  • Angles in Parallel Lines
Bearings, Scale Drawing, Constructions & Loci
  • Bearings
  • Scale & Maps
  • Constructing Triangles
  • Constructions & Loci
Circle Theorems
  • Angles at Centre & Semicircles
  • Chords & Tangents
  • Cyclic Quadrilaterals
  • Segment Theorems
  • Circle Theorem Proofs
Area & Perimeter
  • Area & Perimeter
  • Problem Solving with Areas
Circles, Arcs & Sectors
  • Area & Circumference of Circles
  • Arcs & Sectors
Volume & Surface Area
  • Volume
  • Surface Area
Congruence, Similarity & Geometrical Proof
Area & Volume of Similar Shapes
  • Similar Area & Volumes
Right-Angled Triangles – Pythagoras & Trigonometry
  • Pythagoras Theorem
  • Right-Angled Trigonometry
  • Exact Trig Values
Sine, Cosine Rule & Area of Triangles
  • Sine & Cosine Rules
  • Area of a Triangle
  • Applications of Trigonomet
3D Pythagoras & Trigonometry
  • 3D Pythagoras & Trigonometry
Vectors
  • Introduction to Vectors
  • Working with Vectors
Transformations
  • Translations
  • Reflections
  • Rotations
  • Enlargements
  • Combination of Transformations
Probability Toolkit
  • Basic Probability
  • Relative & Expected Frequency
Simple Probability Diagrams
  • Two Way Tables
  • Frequency Trees
  • Set Notation & Venn Diagrams
Tree Diagrams
  • Tree Diagrams
Combined & Conditional Probability
  • Combined Probability
  • Conditional Probability
  • Combined Conditional Probabilities
Statistics Toolkit
  • Mean, Median & Mode
  • Averages from Tables
  • Range & Quartiles
  • Comparing Distributions
  • Population & Sampling
Statistical Diagrams
  • Bar Charts & Pictograms
  • Pie Charts
  • Time Series Graphs
  • Working with Statistical Diagrams
Histograms
  • Histograms
Cumulative Frequency & Box Plots
  • Cumulative Frequency Diagrams
  • Box Plots
Scatter Graphs & Correlation
  • Scatter Graphs