Top Rated by Parents/Students Nationwide

Mean, Median & Mode

Mean, Median & Mode

Why do we have different types of average?

  • You’ll hear the phrase “on average” used a lot
    • For example
      • by politicians talking about the economy
      • by sports analysts
  • However not all data is numerical
    • For example
      • the party people voted for in the last election
    • Even when data is numerical, some of the data may lead to misleading results
  • This is why we have 3 types of average

What are the three types of average?

1. Mean

  • This is what is usually meant by “average”
    • it’s like an ideal world where everybody has the same
    • everything is shared out equally
  • It is the TOTAL of all the values DIVIDED by the NUMBER OF VALUES
  • Problems with the mean occur when there are one or two unusually high (or low) values in the data ( outliers)
    • these can make the mean too high (or too low) to reflect any patterns in the data
  • A formula for the mean could be thought of as  Mean space equals space fraction numerator Total space Amount over denominator Number space of space Data end fraction

2. Median

  • This is similar to the word medium, which can mean in the middle
  • So the median is the middle value – but beware, the data has to be arranged into numerical order first
  • We would use the median instead of the mean if we did not want extreme values (outliers) affecting our data
  • If there are an odd number of values, there will only be one middle value
  • If there are an even number of values we would get two values in the middle
    • In this case we take the half-way point between these two values
    • This is usually obvious but, if not, add the two middle values and divide by 2
      • this is the same as finding the mean of the middle two values

3. Mode

  • Not all data is numerical and that is where we use mode
  • MOde means the Most Often
  • It is often used for things like “favourite …” or “… sold the most” or “… were the most popular”
  • Mode is sometimes referred to as modal
    • you may see phrases like “ modal value
    • they all mean the same thing, the value occurring most often
  • Be aware that the mode can be applied to numerical data
  • Sometimes if no value/data occurs more often than the others we say there is no mode
    • If two values occur the most we may say there are two modes ( bi-modal)
      • whether it is appropriate to do this will depend on what the data is about

Worked example

a)

Briefly explain why the mean is not a suitable average to use in order to analyse the way people voted in the last general election.

Political parties/politicians have names and so the data is non-numerical

b)

Suggest a better measure of average that can be used.

The mode average can be used for non-numerical data

Worked example

15 students were timed how long it took them to solve a maths problem.  Their times, in seconds, are given below.

12 10 15 14 17
11 12 13 9 21
14 20 19 16 23
a)

Find the mean and median times.

There are a fair amount of numbers so it may be wise to do the adding up in bits - we've used rows.

12 + 10 + 15 + 14 + 17 = 68
11 + 12 + 13 + 9 + 21 = 66
14 + 20 + 19 + 16 + 23 = 92

table row Mean equals cell fraction numerator 68 plus 66 plus 92 over denominator 15 end fraction end cell row blank equals cell 226 over 15 end cell row blank equals cell 15.066 space 666 space... end cell end table

For the median, the data needs to be in order first.

up diagonal strike 9 space space space space up diagonal strike 10 space space space space up diagonal strike 11 space space space space up diagonal strike 12 space space space space up diagonal strike 12 space space space space up diagonal strike 13 space space space space up diagonal strike 14 space space space space circle enclose 14 space space space space up diagonal strike 15 space space space space up diagonal strike 16 space space space space up diagonal strike 17 space space space space up diagonal strike 19 space space space space up diagonal strike 20 space space space space up diagonal strike 21 space space space space up diagonal strike 23

Mean = 15.1 seconds (3 s.f.)
Median time = 14 seconds

b)

Comment on the mode of the data.

The mode (or lack of) is easiest to see from the data listed in order in the median question above.

There are two modes (bi-modal) - 12 and 14 seconds

Alternatively we could say there is no mode.

Calculations with the Mean

What does calculations with the mean involve?

  • Because the mean has a formula it means you could be asked questions that use this formula backwards and in other ways
  • Mean = Total of values ÷ Number of values
    • it is a formula involving 3 quantities
    • if you know any 2, you can find the other one

What calculations with the mean might I have to do?

  • Typical questions ask you to either
    • work backwards from a known mean or
    • combine means for two data sets
  • As this is in the area of problem solving there may be something unusual that you haven’t seen before
    • you will need to make sure you understand what the mean is, how it works and what it shows

How do I solve problems involving calculations with the mean?

  • Known mean, unknown data value
    • This is working backwards from the mean, to an unknown data value
    • Call the unknown data value x , say
    • Using the 'formula' for the mean, set up an equation in  x
    • Rearrange and solve the equation to find  x , the unknown data value
  • Combined means for two data sets
    • This is where we know the mean for two different data sets but would like to know the overall mean
    • We would need to find the overall total of values from both data sets
    • Then divide by the total number of values across both data sets 
    • Alternatively we may know the overall mean and want to work back to the mean of one or both of the data sets, or an unknown data value
  • Others
    • Due to the problem solving nature of such questions there will be some variation in question styles
      • The above two should give you a good idea and cover the vast majority of questions
    • The best way to start tackling questions with the mean is to
      • write down the quantities you do know
      • write down those you don't know
      • use the 'formula' for the mean to link the unknown and known values

Exam Tip

  • You have used the mean so often in mathematics that you do not normally think of it as a formula
    • but it is - and, as with other work in using formulas,
      • write down the information you do know
      • and separately write down the information you are trying to find

Worked example

A class of 24 students have a mean height of 1.56 metres.
Two new students join the class and the mean height of the class increases to 1.58 metres.

Given that the two new students are of equal height, find their height.

Start by writing down what we do know.

No. of students originally in the class;   n 1 = 24
Mean of the original 24 students;   m 1 = 1.56
No. after new students;   n 2 = 24 + 2 = 26
Mean after new students;   m 2 = 1.58

And now write down what we don't know (but need to know to answer the question).

Height of the two new students (both equal);   h metres
Total of all heights before new students;   T 1
Total of all heights after new students;   T 2  = T 1 + h + h = T 1 + 2 h

Considering the formula for the mean, and the values before the new students joined, we can work out T .

table row cell m subscript 1 end cell equals cell T subscript 1 over n subscript 1 end cell row cell 1.56 end cell equals cell T subscript 1 over 24 end cell row cell T subscript 1 end cell equals cell 1.56 cross times 24 end cell row cell T subscript 1 end cell equals cell 37.44 end cell end table

Using the mean 'formula' for the overall mean we can set up, then solve, an equation for h.

table row cell m subscript 2 end cell equals cell T subscript 2 over n subscript 2 end cell row cell Since space T subscript 2 end cell equals cell T subscript 1 plus 2 h equals 37.44 plus 2 h end cell row cell 1.58 end cell equals cell fraction numerator 37.44 plus 2 h over denominator 26 end fraction end cell row cell 37.44 plus 2 h end cell equals cell 1.58 cross times 26 end cell row cell 2 h end cell equals cell 41.08 minus 37.44 equals 3.64 end cell row h equals cell 1.82 end cell end table

Both new students have a height of 1.82 metres

Number Toolkit
  • Mathematical Operations
  • Negative Numbers
  • Money Calculations
  • Number Operations
  • Related Calculations
  • Counting Principles
Prime Factors, HCF & LCM
  • Types of Number
  • Prime Factor Decomposition
  • HCF & LCM
Powers, Roots & Standard Form
  • Powers, Roots & Indices
  • Standard Form
Fractions
  • Basic Fractions
  • Operations with Fractions
Percentages
  • Basic Percentages
  • Working with Percentages
Simple & Compound Interest, Growth & Decay
  • Interest & Depreciation
  • Exponential Growth & Decay
Fractions, Decimals & Percentages
  • Converting between FDP
  • Converting between FDP
Rounding, Estimation & Bounds
  • Rounding & Estimation
  • Bounds
Surds
  • Simplifying Surds
  • Rationalising Denominators
Using a Calculator
  • Using a Calculator
Algebra Toolkit
  • Algebraic Notation & Vocabulary
  • Algebra Basics
Algebraic Roots & Indices
  • Algebraic Roots & Indices
Expanding Brackets
  • Expanding Single Brackets
  • Expanding Multiple Brackets
Factorising
  • Factorising
  • Factorising Quadratics
  • Quadratics Factorising Methods
Completing the Square
  • Completing the Square
Rearranging Formulae
  • Rearranging Formulae
Algebraic Proof
  • Algebraic Proof
Linear Equations
  • Solving Linear Equations
Solving Quadratic Equations
  • Solving Quadratic Equations
  • Quadratic Equation Methods
Simultaneous Equationsr
  • Simultaneous Equations
Iteration
  • Iteration
Forming & Solving Equations
  • Forming Equations
  • Equations & Problem Solving
Functions
  • Functions Toolkit
  • Composite & Inverse Functions
Coordinate Geometrys
  • Coordinates
  • Coordinate Geometry
Linear Graphs y = mx + c
  • Straight Line Graphs (y = mx + c)
  • Parallel & Perpendicular Lines
Graphs of Functions
  • Types of Graphs
  • Graphical Solutions
  • Trig Graphs
Equation of a Circle
  • Equation of a Circle
  • Equation of a Tangents
Estimating Gradients & Areas under Graphs
  • Finding Gradients of Tangents
  • Finding Areas under Graphs
Real-Life Graphs
  • Distance-Time & Speed-Time Graphs
  • Conversion Graphs
  • Rates of Change of Graphs
Solving Inequalities
  • Solving Linear Inequalities
  • Conversion Graphs
  • Solving Quadratic Inequalities
Graphing Inequalities
  • Graphing Inequalities
Transformations of Graphs
  • Reflections of Graphs
Sequences
  • Introduction to Sequences
  • Types of Sequences
  • Linear Sequences
  • Quadratic Sequences
Ratio Toolkit
  • Simple Ratio
  • Working with Proportion
Ratio Problem Solving
  • Ratios & FDP
  • Multiple Ratios
Direct & Inverse Proportions
  • Direct & Inverse Proportion
Standard & Compound Units
  • Time
  • Unit Conversions
  • Compound Measures
Exchange Rates & Best Buys
  • Exchange Rates & Best Buys
Geometry Toolkit
  • Symmetry
  • 2D & 3D Shapes
  • Plans & Elevations
Angles in Polygons & Parallel Lines
  • Basic Angle Properties
  • Angles in Polygons
  • Angles in Parallel Lines
Bearings, Scale Drawing, Constructions & Loci
  • Bearings
  • Scale & Maps
  • Constructing Triangles
  • Constructions & Loci
Circle Theorems
  • Angles at Centre & Semicircles
  • Chords & Tangents
  • Cyclic Quadrilaterals
  • Segment Theorems
  • Circle Theorem Proofs
Area & Perimeter
  • Area & Perimeter
  • Problem Solving with Areas
Circles, Arcs & Sectors
  • Area & Circumference of Circles
  • Arcs & Sectors
Volume & Surface Area
  • Volume
  • Surface Area
Congruence, Similarity & Geometrical Proof
  • Congruence
  • Similarity
  • Geometrical Proof
Area & Volume of Similar Shapes
  • Similar Area & Volumes
Right-Angled Triangles – Pythagoras & Trigonometry
  • Pythagoras Theorem
  • Right-Angled Trigonometry
  • Exact Trig Values
Sine, Cosine Rule & Area of Triangles
  • Sine & Cosine Rules
  • Area of a Triangle
  • Applications of Trigonomet
3D Pythagoras & Trigonometry
  • 3D Pythagoras & Trigonometry
Vectors
  • Introduction to Vectors
  • Working with Vectors
Transformations
  • Translations
  • Reflections
  • Rotations
  • Enlargements
  • Combination of Transformations
Probability Toolkit
  • Basic Probability
  • Relative & Expected Frequency
Simple Probability Diagrams
  • Two Way Tables
  • Frequency Trees
  • Set Notation & Venn Diagrams
Tree Diagrams
  • Tree Diagrams
Combined & Conditional Probability
  • Combined Probability
  • Conditional Probability
  • Combined Conditional Probabilities
Statistics Toolkit
  • Mean, Median & Mode
  • Averages from Tables
  • Range & Quartiles
  • Comparing Distributions
  • Population & Sampling
Statistical Diagrams
  • Bar Charts & Pictograms
  • Pie Charts
  • Time Series Graphs
  • Working with Statistical Diagrams
Histograms
  • Histograms
Cumulative Frequency & Box Plots
  • Cumulative Frequency Diagrams
  • Box Plots
Scatter Graphs & Correlation
  • Scatter Graphs