Top Rated by Parents/Students Nationwide

Range & IQR

Range & IQR

What are the range and interquartile range (IQR)?

  • The three averages ( mean, median and mode) measure what is called central tendency
    • they all give an indication of what is typical about the data
    • what lies roughly in the middle
  • The range and inter quartile range ( IQR) measure how spread out the data is
    • These can only be applied to numerical data
    • Fortunately both are easy to work out!

How do I work out the range?

  • The range is the difference between the highest data value and the lowest data value
    • It measures how spread out the data is
    • You can remember this as "Hi - Lo"
  • There is one possible problem with the range
    • as it considers the highest and lowest values in the data set it could be influenced by anomalies (outliers) in the data
    • these may not be a true representation of how spread the rest of the data may be

How do I find the quartiles?

  • The median splits the data set into two parts, lying half way along the data
    • As their name suggests, quartiles split the data set into four parts
      • The lower quartile (LQ) lies a quarter of the way along the data (when in order)
      • The upper quartile (UQ) lies three quarters of the way along the data
      • You may come across the median being referred to as the second quartile
  • To find the quartiles first use the median to divide the data set into lower and upper halves
    • Make sure the data is put into numerical order first
    • If there are an even number of data values, then the first half of those values are the lower half, and the second half are the upper half
      • In this case, all the numbers in the data set are included in one or the other of the two halves
    • If there are an odd number of data values, then all the values  below the median are the lower half and all the values above the median are the upper half
      • In this case, the median itself is not included as a part of either half
  • The lower quartile is the median of the lower half of the data set, and the upper quartile is the median of the upper half of the data set
    • Find the quartiles in the same way you would find the median for any other data set
      • just restrict your attention to the lower or upper half of the data accordingly
  • Sometimes you may also see the quartiles given in formula form
    • For  n data values:
      • the lower quartile is the  open parentheses fraction numerator n plus 1 over denominator 4 end fraction close parentheses to the power of th  value
      • the upper quartile is the  open parentheses 3 cross times fraction numerator n plus 1 over denominator 4 end fraction close parentheses to the power of th  value
    • Using these can save finding the median and splitting the data into two halves

How do I work out the interquartile range (IQR)?

  • This is the difference between the upper quartile (UQ) and the lower quartile (LQ)
    • So you need to find the quartiles first before you can calculate the interquartile range
  • The interquartile range is  IQR = UQ - LQ
  • The interquartile range considers the middle 50% of the data so is not affected by extreme values in the data
    • The range of a data set, on the other hand, can be affected by extremely large or small values

Exam Tip

  • Remember with the range that you have to do a calculation (even if it is an easy subtraction)
    • it is not enough to write something like the range is 14 to 22
    • the same applies to the interquartile range

Worked example

a)

Find the range and interquartile range for the following data.

3.4 4.2 2.8 3.6 9.2 3.1 2.9 3.4 3.2
3.5 3.7 3.6 3.2 3.1 2.9 4.1 3.6 3.8
3.4 3.2 4.0 3.7 3.6 2.8 3.9 3.1 3.0

The values need to be in order - work carefully to ensure you do not miss any out.

circle enclose bold 2 bold. bold 8 end enclose 2.8 2.9 2.9 3.0 3.1 circle enclose bold 3 bold. bold 1 end enclose 3.1 3.2
3.2 3.2 3.4 3.4 circle enclose bold 3 bold. bold 4 end enclose 3.5 3.6 3.6 3.6
3.6 3.7 circle enclose bold 3 bold. bold 7 end enclose 3.8 3.9 4.0 4.1 4.2 circle enclose bold 9 bold. bold 2 end enclose

Working out the range is now very easy.

Range = Hi - Lo = 9.2 - 2.8 = 6.4

To find the interquartile range, we first need to find the median and split the data into two halves.
There are 27 data values, so the median is the 14 th value (3.4).
The lower half of the data set is

2.8, 2.8, 2.9, 2.9, 3.0, 3.1, 3.1, 3.1, 3.2, 3.2, 3.2, 3.4, 3.4   (all the values below the median)

There are 13 values, so the lower quartile is the 7 th value (3.1).
Remember, the LQ is the median of the lower half of the data set!

LQ = 3.1

The upper half of the data set is

3.5, 3.6, 3.6, 3.6, 3.6, 3.7, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 9.2   (all the values above the median)

There are 13 values, so the upper quartile is the 7 th value (3.7).  (The 7th of these values.)
Remember, the UQ is the median of the upper half of the data set!

UQ = 3.7

Now subtract the LQ from the UQ to find the IQR.

IQR = UQ - LQ = 3.7 - 3.1 = 0.6

The range is 6.4
The interquartile range is 0.6

Alternatively, use the formulae to locate the LQ and UQ.
n equals 27  

The LQ is the  open parentheses fraction numerator 27 plus 1 over denominator 4 end fraction close parentheses to the power of th equals 7 to the power of th  value; LQ = 3.1

The UQ is the  open parentheses 3 cross times fraction numerator 27 plus 1 over denominator 4 end fraction close parentheses to the power of th equals 21 to the power of st  value; UQ = 3.7

b)

Give a reason why, in this case, the interquartile range may be a better measure of how spread out the data is than the range.

The IQR would be a better measure of spread for these data as the highest value (9.2) is very far away from the rest of the numbers - it could be an outlier

Number Toolkit
  • Mathematical Operations
  • Negative Numbers
  • Money Calculations
  • Number Operations
  • Related Calculations
  • Counting Principles
Prime Factors, HCF & LCM
  • Types of Number
  • Prime Factor Decomposition
  • HCF & LCM
Powers, Roots & Standard Form
  • Powers, Roots & Indices
  • Standard Form
Fractions
  • Basic Fractions
  • Operations with Fractions
Percentages
  • Basic Percentages
  • Working with Percentages
Simple & Compound Interest, Growth & Decay
  • Interest & Depreciation
  • Exponential Growth & Decay
Fractions, Decimals & Percentages
  • Converting between FDP
  • Converting between FDP
Rounding, Estimation & Bounds
  • Rounding & Estimation
  • Bounds
Surds
  • Simplifying Surds
  • Rationalising Denominators
Using a Calculator
  • Using a Calculator
Algebra Toolkit
  • Algebraic Notation & Vocabulary
  • Algebra Basics
Algebraic Roots & Indices
  • Algebraic Roots & Indices
Expanding Brackets
  • Expanding Single Brackets
  • Expanding Multiple Brackets
Factorising
  • Factorising
  • Factorising Quadratics
  • Quadratics Factorising Methods
Completing the Square
  • Completing the Square
Rearranging Formulae
  • Rearranging Formulae
Algebraic Proof
  • Algebraic Proof
Linear Equations
  • Solving Linear Equations
Solving Quadratic Equations
  • Solving Quadratic Equations
  • Quadratic Equation Methods
Simultaneous Equationsr
  • Simultaneous Equations
Iteration
  • Iteration
Forming & Solving Equations
  • Forming Equations
  • Equations & Problem Solving
Functions
  • Functions Toolkit
  • Composite & Inverse Functions
Coordinate Geometrys
  • Coordinates
  • Coordinate Geometry
Linear Graphs y = mx + c
  • Straight Line Graphs (y = mx + c)
  • Parallel & Perpendicular Lines
Graphs of Functions
  • Types of Graphs
  • Graphical Solutions
  • Trig Graphs
Equation of a Circle
  • Equation of a Circle
  • Equation of a Tangents
Estimating Gradients & Areas under Graphs
  • Finding Gradients of Tangents
  • Finding Areas under Graphs
Real-Life Graphs
  • Distance-Time & Speed-Time Graphs
  • Conversion Graphs
  • Rates of Change of Graphs
Solving Inequalities
  • Solving Linear Inequalities
  • Conversion Graphs
  • Solving Quadratic Inequalities
Graphing Inequalities
  • Graphing Inequalities
Transformations of Graphs
  • Reflections of Graphs
Sequences
  • Introduction to Sequences
  • Types of Sequences
  • Linear Sequences
  • Quadratic Sequences
Ratio Toolkit
  • Simple Ratio
  • Working with Proportion
Ratio Problem Solving
  • Ratios & FDP
  • Multiple Ratios
Direct & Inverse Proportions
  • Direct & Inverse Proportion
Standard & Compound Units
  • Time
  • Unit Conversions
  • Compound Measures
Exchange Rates & Best Buys
  • Exchange Rates & Best Buys
Geometry Toolkit
  • Symmetry
  • 2D & 3D Shapes
  • Plans & Elevations
Angles in Polygons & Parallel Lines
  • Basic Angle Properties
  • Angles in Polygons
  • Angles in Parallel Lines
Bearings, Scale Drawing, Constructions & Loci
  • Bearings
  • Scale & Maps
  • Constructing Triangles
  • Constructions & Loci
Circle Theorems
  • Angles at Centre & Semicircles
  • Chords & Tangents
  • Cyclic Quadrilaterals
  • Segment Theorems
  • Circle Theorem Proofs
Area & Perimeter
  • Area & Perimeter
  • Problem Solving with Areas
Circles, Arcs & Sectors
  • Area & Circumference of Circles
  • Arcs & Sectors
Volume & Surface Area
  • Volume
  • Surface Area
Congruence, Similarity & Geometrical Proof
  • Congruence
  • Similarity
  • Geometrical Proof
Area & Volume of Similar Shapes
  • Similar Area & Volumes
Right-Angled Triangles – Pythagoras & Trigonometry
  • Pythagoras Theorem
  • Right-Angled Trigonometry
  • Exact Trig Values
Sine, Cosine Rule & Area of Triangles
  • Sine & Cosine Rules
  • Area of a Triangle
  • Applications of Trigonomet
3D Pythagoras & Trigonometry
  • 3D Pythagoras & Trigonometry
Vectors
  • Introduction to Vectors
  • Working with Vectors
Transformations
  • Translations
  • Reflections
  • Rotations
  • Enlargements
  • Combination of Transformations
Probability Toolkit
  • Basic Probability
  • Relative & Expected Frequency
Simple Probability Diagrams
  • Two Way Tables
  • Frequency Trees
  • Set Notation & Venn Diagrams
Tree Diagrams
  • Tree Diagrams
Combined & Conditional Probability
  • Combined Probability
  • Conditional Probability
  • Combined Conditional Probabilities
Statistics Toolkit
  • Mean, Median & Mode
  • Averages from Tables
  • Range & Quartiles
  • Comparing Distributions
  • Population & Sampling
Statistical Diagrams
  • Bar Charts & Pictograms
  • Pie Charts
  • Time Series Graphs
  • Working with Statistical Diagrams
Histograms
  • Histograms
Cumulative Frequency & Box Plots
  • Cumulative Frequency Diagrams
  • Box Plots
Scatter Graphs & Correlation
  • Scatter Graphs