Top Rated by Parents/Students Nationwide

Right-Angled Trigonometry

SOHCAHTOA

What is Trigonometry?

  • Trigonometry is the mathematics of angles in triangles
  • It looks at the relationship between side lengths and angles of triangles
  • It comes from the Greek words trigonon meaning ‘triangle’ and metron meaning ‘measure’

 

What are Sin, Cos and Tan?

  • The three trigonometric functions Sine, Cosine and Tangent come from ratios of side lengths in right-angled triangles
  • To see how the ratios work you must first label the sides of a right-angled triangle in relation to a chosen angle
    • The hypotenuse, H, is the longest side in a right-angled triangle
      • It will always be opposite the right angle
    • If we label one of the other angles θ, the side opposite θ will be labelled opposite, O, and the side next to θ will be labelled adjacent, A
  • The functions Sine, Cosine and Tangent are the ratios of the lengths of these sides as follows

Sin space theta blank equals space opposite over hypotenuse space equals space O over H

 Cos space theta blank equals space adjacent over hypotenuse space equals space straight A over straight H

Tan space theta blank equals space opposite over adjacent space equals space straight O over straight A

What is SOHCAHTOA?

  • SOHCAHTOA is a mnemonic that is often used as a way of remembering which ratio is which
    • Sin is Opposite over Hypotenuse
    • Cos is Adjacent over Hypotenuse
    • Tan is Opposite over Adjacent
  • In a right-angled triangle, label one angle other than the right angle and label the sides of the triangles as follows

Right-Angled-Triangles-OAH-Theta, IGCSE & GCSE Maths revision notes

  • Note that θ is the Greek letter theta
    • O = opposite θ
    • A = adjacent (next to) θ
    •  H = hypotenuse - 'H' is always the same, but 'O' and 'A' change depending on which angle we're calling θ
  • Using those labels, the three SOHCAHTOA equations are:

Right-Angled Triangles Diagram 1

How can we use SOHCAHTOA to find missing lengths?

  • If you know the length of one of the sides of any right-angled triangle and one of the angles you can use SOHCAHTOA to find the length of the other sides
    • Always start by labelling the sides of the triangle with H, O and A
    • Choose the correct ratio by looking only at the values that you have and that you want
      • For example if you know the angle and the side opposite it (O) and you want to find the hypotenuse (H) you should use the sine ratio
    • Substitute the values into the ratio
    • Use your calculator to find the solution

 

How can we use SOHCAHTOA to find missing angles?

  • If you know two sides of any right-angled triangle you can use SOHCAHTOA to find the size of one of the angles
  • Missing angles are found using the inverse functions:

 theta space equals space Sin to the power of negative 1 end exponent space O over H   ,    theta space equals space Cos to the power of negative 1 end exponent space straight A over straight H   ,   theta space equals space Tan to the power of negative 1 end exponent space straight O over straight A

  • After choosing the correct ratio and substituting the values use the inverse trigonometric functions on your calculator to find the correct answer

Exam Tip

  • SOHCAHTOA (like Pythagoras) can only be used in right-angles triangles – for triangles that are not right-angled, you will need to use the Sine Rule or the Cosine Rule
  • Also, make sure your calculator is set to measure angles in degrees

Worked example

Find the values of x and y in the following triangles.

Give your answers to 3 significant figures.

Two Right Angled Triangles with measurements, IGCSE & GCSE Maths revision notes

To find x, first label the triangle

Right Pointing Right Angled Triangle with measurements, IGCSE & GCSE Maths revision notes

We know A and we want to know O - that's TOA or tanθ equals opposite over adjacent

tan open parentheses 43 close parentheses equals x over 9

Multiply both sides by 9

9 cross times tan open parentheses 43 close parentheses space equals space x

Enter on your calculator

x equals 8.3926...

Round to 3 significant figures

bold italic x bold equals bold 8 bold. bold 39 bold space bold cm

To find y, first label the triangle

Left Pointing Right Angled Triangle with measurements, IGCSE & GCSE Maths revision notes

We know A and H - that's CAH or cosθ equals adjacent over hypotenuse

cos open parentheses y close parentheses equals 8 over 23

Use inverse cos to find y

y equals cos to the power of negative 1 end exponent open parentheses 8 over 23 close parentheses

Enter on your calculator

y equals 69.6455...

Round to 3 significant figures

bold italic y bold equals bold 69 bold. bold 6 bold degree

Elevation & Depression

What are the angles of elevation and depression?

  • If a person looks at an object that is not on the same horizontal line as their eye-level they will be looking at either an angle of elevation or depression
    • If a person looks up at an object their line of sight will be at an angle of elevation with the horizontal
    • If a person looks down at an object their line of sight will be at an angle of depression with the horizontal
  • Angles of elevation and depression are measured from the horizontal
  • Right-angled trigonometry can be used to find an angle of elevation or depression or a missing distance
  • Tan is often used in real-life scenarios with angles of elevation and depression
    • For example if we know the distance we are standing from a tree and the angle of elevation of the top of the tree we can use Tan to find its height
    • Or if we are looking at a boat at to sea and we know our height above sea level and the angle of depression we can find how far away the boat is

IV60s58R_ib-ai-sl-3-3-3-applications-of-trigonometry-diagram-1

Exam Tip

  • It may be useful to draw more than one diagram if the triangles that you are interested in overlap one another

Worked example

A cliff is perpendicular to the sea and the top of the cliff stands 24 m above the level of the sea. The angle of depression from the cliff to a boat at sea is 35°. At a point xm up the cliff is a flag marker and the angle of elevation from the boat to the flag marker is 18°.

a)
Draw and label a diagram to show the top of the cliff, T, the foot of the cliff, F, the flag marker, M, and the boat, B, labelling all the angles and distances given above.

 3-3-3-ai-sl-elevation--depression-we-solution-i

b)
Find the distance from the boat to the foot of the cliff.

3-3-3-ai-sl-elevation--depression-we-solution-ii

c)
Find the value of x.

3-3-3-ai-sl-elevation--depression-we-solution-iii

Number Toolkit
  • Mathematical Operations
  • Negative Numbers
  • Money Calculations
  • Number Operations
  • Related Calculations
  • Counting Principles
Prime Factors, HCF & LCM
  • Types of Number
  • Prime Factor Decomposition
  • HCF & LCM
Powers, Roots & Standard Form
  • Powers, Roots & Indices
  • Standard Form
Fractions
  • Basic Fractions
  • Operations with Fractions
Percentages
  • Basic Percentages
  • Working with Percentages
Simple & Compound Interest, Growth & Decay
  • Interest & Depreciation
  • Exponential Growth & Decay
Fractions, Decimals & Percentages
  • Converting between FDP
  • Converting between FDP
Rounding, Estimation & Bounds
  • Rounding & Estimation
  • Bounds
Surds
  • Simplifying Surds
  • Rationalising Denominators
Using a Calculator
  • Using a Calculator
Algebra Toolkit
  • Algebraic Notation & Vocabulary
  • Algebra Basics
Algebraic Roots & Indices
  • Algebraic Roots & Indices
Expanding Brackets
  • Expanding Single Brackets
  • Expanding Multiple Brackets
Factorising
  • Factorising
  • Factorising Quadratics
  • Quadratics Factorising Methods
Completing the Square
  • Completing the Square
Rearranging Formulae
  • Rearranging Formulae
Algebraic Proof
  • Algebraic Proof
Linear Equations
  • Solving Linear Equations
Solving Quadratic Equations
  • Solving Quadratic Equations
  • Quadratic Equation Methods
Simultaneous Equationsr
  • Simultaneous Equations
Iteration
  • Iteration
Forming & Solving Equations
  • Forming Equations
  • Equations & Problem Solving
Functions
  • Functions Toolkit
  • Composite & Inverse Functions
Coordinate Geometrys
  • Coordinates
  • Coordinate Geometry
Linear Graphs y = mx + c
  • Straight Line Graphs (y = mx + c)
  • Parallel & Perpendicular Lines
Graphs of Functions
  • Types of Graphs
  • Graphical Solutions
  • Trig Graphs
Equation of a Circle
  • Equation of a Circle
  • Equation of a Tangents
Estimating Gradients & Areas under Graphs
  • Finding Gradients of Tangents
  • Finding Areas under Graphs
Real-Life Graphs
  • Distance-Time & Speed-Time Graphs
  • Conversion Graphs
  • Rates of Change of Graphs
Solving Inequalities
  • Solving Linear Inequalities
  • Conversion Graphs
  • Solving Quadratic Inequalities
Graphing Inequalities
  • Graphing Inequalities
Transformations of Graphs
  • Reflections of Graphs
Sequences
  • Introduction to Sequences
  • Types of Sequences
  • Linear Sequences
  • Quadratic Sequences
Ratio Toolkit
  • Simple Ratio
  • Working with Proportion
Ratio Problem Solving
  • Ratios & FDP
  • Multiple Ratios
Direct & Inverse Proportions
  • Direct & Inverse Proportion
Standard & Compound Units
  • Time
  • Unit Conversions
  • Compound Measures
Exchange Rates & Best Buys
  • Exchange Rates & Best Buys
Geometry Toolkit
  • Symmetry
  • 2D & 3D Shapes
  • Plans & Elevations
Angles in Polygons & Parallel Lines
  • Basic Angle Properties
  • Angles in Polygons
  • Angles in Parallel Lines
Bearings, Scale Drawing, Constructions & Loci
  • Bearings
  • Scale & Maps
  • Constructing Triangles
  • Constructions & Loci
Circle Theorems
  • Angles at Centre & Semicircles
  • Chords & Tangents
  • Cyclic Quadrilaterals
  • Segment Theorems
  • Circle Theorem Proofs
Area & Perimeter
  • Area & Perimeter
  • Problem Solving with Areas
Circles, Arcs & Sectors
  • Area & Circumference of Circles
  • Arcs & Sectors
Volume & Surface Area
  • Volume
  • Surface Area
Congruence, Similarity & Geometrical Proof
  • Congruence
  • Similarity
  • Geometrical Proof
Area & Volume of Similar Shapes
  • Similar Area & Volumes
Right-Angled Triangles – Pythagoras & Trigonometry
Sine, Cosine Rule & Area of Triangles
  • Sine & Cosine Rules
  • Area of a Triangle
  • Applications of Trigonomet
3D Pythagoras & Trigonometry
  • 3D Pythagoras & Trigonometry
Vectors
  • Introduction to Vectors
  • Working with Vectors
Transformations
  • Translations
  • Reflections
  • Rotations
  • Enlargements
  • Combination of Transformations
Probability Toolkit
  • Basic Probability
  • Relative & Expected Frequency
Simple Probability Diagrams
  • Two Way Tables
  • Frequency Trees
  • Set Notation & Venn Diagrams
Tree Diagrams
  • Tree Diagrams
Combined & Conditional Probability
  • Combined Probability
  • Conditional Probability
  • Combined Conditional Probabilities
Statistics Toolkit
  • Mean, Median & Mode
  • Averages from Tables
  • Range & Quartiles
  • Comparing Distributions
  • Population & Sampling
Statistical Diagrams
  • Bar Charts & Pictograms
  • Pie Charts
  • Time Series Graphs
  • Working with Statistical Diagrams
Histograms
  • Histograms
Cumulative Frequency & Box Plots
  • Cumulative Frequency Diagrams
  • Box Plots
Scatter Graphs & Correlation
  • Scatter Graphs