Top Rated by Parents/Students Nationwide

Angles at Centre & Semicircles

Constructions

What are circle theorems?

  • You will have learned a lot of angle facts for your GCSE, including angles in polygons and angles with parallel lines
  • Circle Theorems deal with angle facts that occur when lines are drawn within and connected to a circle

What do I need to know?

  • You must be familiar with the names of parts of a circle including  radius, diameter, arc, sector, chord, segment and  tangent

Parts of a circle, IGCSE & GCSE Maths revision notes

  • To solve some problems you may need to use the angle facts you are already familiar with from triangles, polygons, and parallel lines
  • You may also have to use the formulae for circumference and area, so ensure you’re familiar with them
    • Angles at Centre & Circumference

      Circle Theorem: The angle subtended by an arc at the centre is twice the angle at the circumference

      • This is one of the most useful circle theorems and forms a basis for many other angle facts within circles
      • In this theorem, the chords (radii) to the centre and the chords to the circumference are both drawn from (subtended by) the ends of the same arc
      • It is an easy circle theorem to spot on a diagram
        STEP 1
        Find any two radii in the circle and follow them to the circumference
        STEP 2
        See if there are lines from those points going to any other point on the circumference
      • If you are asked for a reason in an exam and you use this theorem, use the key phrase;
        • “The angle at the centre is twice the angle at the circumference

      Centre twice circumference, IGCSE & GCSE Maths revision notes

      • This theorem can also happen when the ‘triangle parts’ overlap:

      Triangle overlap, IGCSE & GCSE Maths revision notes

      Circle theorem: The angle in a semicircle is a right angle

      • This is a special case of the angle at the centre theorem above
        • The angle on the diameter = 180°
        • The angle at the circumference = 90°
      • It is easy to spot, look for a diameter in the circle and see if it makes the base of a triangle, with its top vertex at the circumference
        • Make sure that you are looking at a diameter by checking it goes through the centre
        • These questions only need half of the circle so they could appear in whole circles or in semicircles only
      • Any angle at the circumference that comes from each end of the diameter in this way will be 90°
      • This is most commonly known as the angle in a semicircle theorem, however if you are asked for a  reason in an exam and you use this theorem, use the key phrase; 
        • “The angle in a semicircle is 90° 
      • Look out for triangles hidden among other lines/shapes within the circle

      Right angle in a semicicrcle, IGCSE & GCSE Maths revision notes

Exam Tip

  • Add anything you can to a diagram you have been given
    • Mark any equal radii and write in any angles and lengths you can work out, even if they don’t seem relevant to the actual question
  • Questions often ask for “reasons” and the names/titles/phrases for each of these is exactly what they are after
    • When asked to “give reasons” aim to quote an angle fact or circle theorem for every angle you find, not just one for the final answer

Worked example

Find the value of Q1-Circle-Theorems-1, IGCSE & GCSE Maths revision notes

 

There are three radii in the diagram, mark these as equal length lines. Notice how they create two isosceles triangles.
Base angles in isosceles triangles are equal, so this means that the angle next to  Q1-Circle-Theorems-2, IGCSE & GCSE Maths revision notes

 

Using the circle theorem “The angle at the centre subtended by an arc is twice the angle at the circumference”, form an equation for Expand the brackets and solve the equation.

Number Toolkit
  • Mathematical Operations
  • Negative Numbers
  • Money Calculations
  • Number Operations
  • Related Calculations
  • Counting Principles
Prime Factors, HCF & LCM
  • Types of Number
  • Prime Factor Decomposition
  • HCF & LCM
Powers, Roots & Standard Form
  • Powers, Roots & Indices
  • Standard Form
Fractions
  • Basic Fractions
  • Operations with Fractions
Percentages
  • Basic Percentages
  • Working with Percentages
Simple & Compound Interest, Growth & Decay
  • Interest & Depreciation
  • Exponential Growth & Decay
Fractions, Decimals & Percentages
  • Converting between FDP
  • Converting between FDP
Rounding, Estimation & Bounds
  • Rounding & Estimation
  • Bounds
Surds
  • Simplifying Surds
  • Rationalising Denominators
Using a Calculator
  • Using a Calculator
Algebra Toolkit
  • Algebraic Notation & Vocabulary
  • Algebra Basics
Algebraic Roots & Indices
  • Algebraic Roots & Indices
Expanding Brackets
  • Expanding Single Brackets
  • Expanding Multiple Brackets
Factorising
  • Factorising
  • Factorising Quadratics
  • Quadratics Factorising Methods
Completing the Square
  • Completing the Square
Rearranging Formulae
  • Rearranging Formulae
Algebraic Proof
  • Algebraic Proof
Linear Equations
  • Solving Linear Equations
Solving Quadratic Equations
  • Solving Quadratic Equations
  • Quadratic Equation Methods
Simultaneous Equationsr
  • Simultaneous Equations
Iteration
  • Iteration
Forming & Solving Equations
  • Forming Equations
  • Equations & Problem Solving
Functions
  • Functions Toolkit
  • Composite & Inverse Functions
Coordinate Geometrys
  • Coordinates
  • Coordinate Geometry
Linear Graphs y = mx + c
  • Straight Line Graphs (y = mx + c)
  • Parallel & Perpendicular Lines
Graphs of Functions
  • Types of Graphs
  • Graphical Solutions
  • Trig Graphs
Equation of a Circle
  • Equation of a Circle
  • Equation of a Tangents
Estimating Gradients & Areas under Graphs
  • Finding Gradients of Tangents
  • Finding Areas under Graphs
Real-Life Graphs
  • Distance-Time & Speed-Time Graphs
  • Conversion Graphs
  • Rates of Change of Graphs
Solving Inequalities
  • Solving Linear Inequalities
  • Conversion Graphs
  • Solving Quadratic Inequalities
Graphing Inequalities
  • Graphing Inequalities
Transformations of Graphs
  • Reflections of Graphs
Sequences
  • Introduction to Sequences
  • Types of Sequences
  • Linear Sequences
  • Quadratic Sequences
Ratio Toolkit
  • Simple Ratio
  • Working with Proportion
Ratio Problem Solving
Direct & Inverse Proportions
  • Direct & Inverse Proportion
Standard & Compound Units
  • Time
  • Unit Conversions
  • Compound Measures
Exchange Rates & Best Buys
Geometry Toolkit
  • Symmetry
  • 2D & 3D Shapes
  • Plans & Elevations
Angles in Polygons & Parallel Lines
  • Basic Angle Properties
  • Angles in Polygons
  • Angles in Parallel Lines
Bearings, Scale Drawing, Constructions & Loci
  • Bearings
  • Scale & Maps
  • Constructing Triangles
  • Constructions & Loci
Circle Theorems
Area & Perimeter
  • Area & Perimeter
  • Problem Solving with Areas
Circles, Arcs & Sectors
  • Area & Circumference of Circles
  • Arcs & Sectors
Volume & Surface Area
  • Volume
  • Surface Area
Congruence, Similarity & Geometrical Proof
  • Congruence
  • Similarity
  • Geometrical Proof
Area & Volume of Similar Shapes
  • Similar Area & Volumes
Right-Angled Triangles – Pythagoras & Trigonometry
  • Pythagoras Theorem
  • Right-Angled Trigonometry
  • Exact Trig Values
Sine, Cosine Rule & Area of Triangles
  • Sine & Cosine Rules
  • Area of a Triangle
  • Applications of Trigonomet
3D Pythagoras & Trigonometry
  • 3D Pythagoras & Trigonometry
Vectors
  • Introduction to Vectors
  • Working with Vectors
Transformations
  • Translations
  • Reflections
  • Rotations
  • Enlargements
  • Combination of Transformations
Probability Toolkit
  • Basic Probability
  • Relative & Expected Frequency
Simple Probability Diagrams
  • Two Way Tables
  • Frequency Trees
  • Set Notation & Venn Diagrams
Tree Diagrams
  • Tree Diagrams
Combined & Conditional Probability
  • Combined Probability
  • Conditional Probability
  • Combined Conditional Probabilities
Statistics Toolkit
  • Mean, Median & Mode
  • Averages from Tables
  • Range & Quartiles
  • Comparing Distributions
  • Population & Sampling
Statistical Diagrams
  • Bar Charts & Pictograms
  • Pie Charts
  • Time Series Graphs
  • Working with Statistical Diagrams
Histograms
  • Histograms
Cumulative Frequency & Box Plots
  • Cumulative Frequency Diagrams
  • Box Plots
Scatter Graphs & Correlation
  • Scatter Graphs