Top Rated by Parents/Students Nationwide

Quadratic Equation Methods

Quadratic Equation Methods

If you have to solve a quadratic equation but are not told which method to use, here is a guide as to what to do

  

When should I solve by factorisation?

  • When the question asks to solve by factorisation
    • For example, part (a) Factorise 6x2 + 7x – 3, part (b) Solve  6x2 + 7x – 3 = 0
  • When solving two-term quadratic equations
    • For example, solve x2 – 4x = 0
      • …by taking out a common factor of x to get x(x – 4) = 0
      • ...giving x = 0 and x = 4
    • For example, solve x2 – 9 = 0
      • …using the difference of two squares to factorise it as (x + 3)(x – 3) = 0
      • ...giving x = -3 and x = 3
      • (Or by rearranging to x2 = 9 and using ±√ to get x =  = ±3)

  

When should I use the quadratic formula?

  • When the question says to leave solutions correct to a given accuracy (2 decimal places, 3 significant figures etc)
  • When the quadratic formula may be faster than factorising
    • It's quicker to solve 36x2 + 33x – 20 = 0 using the quadratic formula then by factorisation
  • If in doubt, use the quadratic formula - it always works

   

When should I solve by completing the square?

  • When part (a) of a question says to complete the square and part (b) says to use part (a) to solve the equation
  • When making x the subject of harder formulae containing x2 and x terms
    • For example, make x the subject of the formula x2 + 6x = y
      • Complete the square: (x + 3)2 – 9 = y
      • Add 9 to both sides: (x + 3)2 = y + 9
      • Take square roots and use ±:  x plus 3 equals plus-or-minus square root of y plus 9 end root
      • Subtract 3:  x equals negative 3 plus-or-minus square root of y plus 9 end root

Exam Tip

  • Calculators can solve quadratic equations so use them to check your solutions
  • If the solutions on your calculator are whole numbers or fractions (with no square roots), this means the quadratic equation does factorise

Worked example

(a)
Solve x squared minus 7 x plus 2 equals 0, giving your answers correct to 2 decimal places
 

“Correct to 2 decimal places” suggests using the quadratic formula
Substitute a = 1, b = -7 and c = 2 into the formula, putting brackets around any negative numbers
 

  x equals fraction numerator negative open parentheses negative 7 close parentheses plus-or-minus square root of open parentheses negative 7 close parentheses squared minus 4 cross times 1 cross times 2 end root over denominator 2 cross times 1 end fraction

Use a calculator to find each solution
 

x = 6.70156… or 0.2984...
 

Round your final answers to 2 decimal places

x = 6.70 or x = 0.30

(b)
Solve 16 x squared minus 82 x plus 45 equals 0
 

Method 1
If you cannot spot the factorisation, use the quadratic formula
Substitute a = 16, b = -82 and c = 45 into the formula, putting brackets around any negative numbers

x equals fraction numerator negative open parentheses negative 82 close parentheses plus-or-minus square root of open parentheses negative 82 close parentheses squared minus 4 cross times 16 cross times 45 end root over denominator 2 cross times 16 end fraction

Use a calculator to find each solution

xbold 9 over bold 2  or xbold 5 over bold 8

Method 2
If you do spot the factorisation, (2x – 9)(8x – 5), then use that method instead
 

open parentheses 2 x minus 9 close parentheses open parentheses 8 x minus 5 close parentheses equals 0
 

Set the first bracket equal to zero
 

2 x minus 9 equals 0
 

Add 9 to both sides then divide by 2
 

table row cell 2 x end cell equals 9 row x equals cell 9 over 2 end cell end table

Set the second bracket equal to zero
 

8 x minus 5 equals 0
 

Add 5 to both sides then divide by 8
 

table row cell 8 x end cell equals 5 row x equals cell 5 over 8 end cell end table

xbold 9 over bold 2  or xbold 5 over bold 8

 

(c)
By writing x squared plus 6 x plus 5 in the form open parentheses x plus p close parentheses squared plus q, solve x squared plus 6 x plus 5 equals 0
 

This question wants you to complete the square first
Find p (by halving the middle number)
 

p equals 6 over 2 equals 3
 

Write x2 + 6x as (x + p)2 - p2
 

table row cell x squared plus 6 x end cell equals cell open parentheses x plus 3 close parentheses squared minus 3 squared end cell row blank equals cell open parentheses x plus 3 close parentheses squared minus 9 end cell end table
 

Replace x2 + 6x with (x + 3)2 – 9 in the equation
 

table row cell open parentheses x plus 3 close parentheses squared minus 9 plus 5 end cell equals 0 row cell open parentheses x plus 3 close parentheses squared minus 4 end cell equals 0 end table

Make x the subject of the equation (start by adding 4 to both sides)
 

open parentheses x plus 3 close parentheses squared equals 4
 

Take square roots of both sides (include a ± sign to get both solutions)
 

x plus 3 equals plus-or-minus square root of 4 equals plus-or-minus 2
 

Subtract 3 from both sides
 

x equals plus-or-minus 2 minus 3
 

Find each solution separately using + first, then - second

x = - 5, x = - 1

Even though the quadratic factorises to (x + 5)(x + 1), this is not the method asked for in the question

Ratio Toolkit
Ratio Problem Solving
Direct & Inverse Proportions
Standard & Compound Units
Exchange Rates & Best Buys